"Was die Welt im

Innersten zusammenhält",

... the bound states of the strong interaction

 How does the strong interaction produce its massive bound states from almost massless quarks?

Which (exotic) bound states do exist?

2+2+5 MeV → 938 MeV

INSIGHT: A new experiment at ELSA

ELSA = University accelerator with the highest energy in Europe!

Polarised beam and polarised target

A world-wide unique experiment

- Unique combination of an almost complete angular coverage for high resolution photon measurements, charged particle detection and the ability to perform measurements with polarised beam and target
- Strange quark sector + field remained in a standstill for decades due to missing precise data
- Do exotic states such as pentaquarks also exist in the strange quark sector?

Non-strange baryons:

Gain a complete picture of the N^* , Δ^* - baryon spectrum:

- Polarized photoproduction off the polarized proton <u>and</u> neutron!
- Multi-meson photoproduction

Strange baryons (Λ^*, Σ^*):

"... the field is starved for data" (PDG'2024)

		үр →	K ⁺ Λ [∗]	$\rightarrow \mathrm{K}^{+}\Sigma^{0}\pi^{0}$	(isos	spin select	ive)
(c [∠])	1600		(a)	$\sum_{n=10000}^{n}$ (b)	•	signal:	05 5

- Established resonances remained the same for more than 30 years!
- Interesting exception: Two pole structure of the $\Lambda(1405)$
- ➡ Not even all states of the first excitation band known!
 - Spectrum and properties of Λ^{*}, Σ^{*}

- Multi-quark states? molecules? 2-pole structures? e.g: $\gamma p \rightarrow K^+ \Lambda^* \rightarrow K^+ \Sigma^0 \pi^0$, $\gamma p \rightarrow K^+ \Sigma^* \rightarrow K^+ \Lambda \pi^0$,

https://agthoma.hiskp.uni-bonn.de